
Using IMPLAN Social Accounts for
Applied General Equilibrium Modeling

Thomas F. Rutherford∗‡ and Andrew Schreiber†‡

‡
Department of Agricultural and Applied Economics, University of Wisconsin-Madison, US

May 26, 2016

Contents

1 Introduction 1

2 Reading IMPLAN Data into GAMS 2

3 Microconsistency 6

4 The Social Accounting Matrix 13

5 Partitioning and Benchmark Consistency 19

6 Using the Batch File 20

A New GAMS Set Identifiers 23

B Accounting Model 25
B.1 The Primal Formulation . 25
B.2 Equilibrium Conditions . 28
B.3 GAMS/MCP Formulation . 28
B.4 Zero-Profit Conditions . 28
B.5 Market Clearance . 30
B.6 Income Balance . 31

1 Introduction

This document serves to elucidate on each element of our build stream for using IMPLAN data in GAMS
for running computable general equilibrium (CGE) models. Here, a step by step overview of each element
of the build stream is given, along with directions on how to use the included batch file that structures
the working directory in accordance to the build stream file associations. For previous implementations,
see (Rausch and Rutherford, 2009).
∗Email: rutherford@aae.wisc.edu
†Email: schreiber@aae.wisc.edu

1

rutherford@aae.wisc.edu
schreiber@aae.wisc.edu

Build Stream (IMPLAN) Rutherford and Schreiber

The build stream comes with four separate GAMS programs for data reconciliation and a batch file
that automatically runs the programs for any given IMPLAN data set(s). These files are:

1. readimplan.gms: This program serves to read in the raw data directly from the GAMS files outputted
by the IMPLAN software.

2. condense.gms: Once the data is read into GAMS, this program runs a series of balancing checks. If
the data fail our microconsistency check (row sums do not equal column sums), we apply a least
squares balancing routine that induces sparsity.

3. samgen.gms: After enforcing standard accounting identities in the data set, this program structures
the data into a social accounting matrix conducive to the CGE modeling framework. Additionally,
an excel file is outputted for the interested individual.

4. partition.gms: Finally, in order to verify the data has been read into the system correctly, this
program reads in the excel file, formulates an accounting CGE model, and verifies that benchmark
consistency holds (i.e. the model is properly calibrated).

5. run.bat: While the above GAMS programs are subject to alterations by the interested modeler, the
provided batch file runs everything automatically. However, the individual must be careful to point
the program to the correct data directory (directions below).

We progress in the listed order of the programs above by describing the key elements of each program (line
by line if need be). The idea behind this technical note largely concerns more of the logical progression
of each program rather than understanding every line of GAMS code provided. Notably, when including
actual GAMS code from the GAMS programs, we introduce only fractions of the actual code for the sake
of brevity. By and large, the “. . . ” symbol is used when more of similar code exists for a given part. GAMS
code is written in blue text in this document.

2 Reading IMPLAN Data into GAMS

GAMS is fundamentally a set driven mathematical programming language. Before the modeler can
do anything in this framework, set indices must be defined and labeled for later use. For instance, in
readimplan.gms, we’ve defined IMPLAN sets to be:

set r Rows and columns in the SAM /

* 1*440 Industries,

1 "Oilseed farming",
2 "Grain farming",
3 "Vegetable and melon farming",
4 "Fruit farming",
5 "Tree nut farming",
6 "Greenhouse, nursery, and floriculture production",
7 "Tobacco farming",
8 "Cotton farming",
9 "Sugarcane and sugar beet farming",
10 "All other crop farming",
11 "Cattle ranching and farming",
12 "Dairy cattle and milk production",
13 "Poultry and egg production",
14 "Animal production, except cattle and poultry and eggs",

Page 2 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

15 "Forestry, forest products, and timber tract production",
...
set t Transfer account codes /

3001*3440 Commodities,
15001 "Corporate Profits with IVA"
15002 "Emp Comp (Wages/Salary w/o Soc Sec)"
15003 "Employee Comp (Other Labor Income)"
15004 "Proprietors Inc (w/o Soc Sec & CCA)"

...

The structure of the IMPLAN data can be summarized in Table 1, which categorizes the data into our
indexed framework. In this first pass for reading in the data, we are restricted to using the predefined
numerical set identifiers for each element. As is later apparent, this is changed for ease in remembering
the precise definition of each set element (without having to look up, say, what is identified by set element
10003). Note that each set is labeled r or t which is a simple way to reference all elements in a row of the
social accounting matrix (r for row) or transfer accounts (t for transfers).

Before continuing on how the data was read into GAMS once sets were defined, we’ve incorporated
a bit of dynamics into the programming that allows the individual to make simple directory changes
without having to repeatedly change each applicable spot in the code. For instance, we have:

$if not set datadir $set datadir ..\data\Wisconsin
$if not set regions $set regions Adams
$if not set ds $set ds Adams
$set runtrace yes
$if not set samscale $set samscale (1/1000)

Notably, for modelers that only wish to deal with the batch program, this bit of information is largely
irrelevant. However, if you’d like to run readimplan.gms on its own (not in the context of all other
programs), then you can change the above information. For instance, if you have data for Cook county,
Illinois as opposed to Adams county, Wisconsin, simply change the top three entries to (assuming your
directories are set up with the Cook data file in ..\data \Illinois):

$if not set datadir $set datadir ..\data\Illinois
$if not set regions $set regions Cook
$if not set ds $set ds Cook

However, in most cases, changing elements in individual programs is not recommended. If you are
somewhat unfamiliar with GAMS programming, identifying errors can be a tedious task indeed.

The next task concerns actually reading the GAMS data file outputted by the IMPLAN software. For a
description on how to translate IMPLAN data into GAMS readable data via their software system, go to
IMPLAN-Group-LLC. (2014). In order to do so in GAMS, we use the simple command:

alias (r,c);

parameter sam(r,t,c) Base year social accounts /
$offlisting
$include "%datadir%\%regions%.gms"
$onlisting
/;

Above, we specify a parameter which denotes a data element in GAMS (for information on GAMS
elements, see Rosenthal (2004)). The command alias allows the modeler to create two identical sets
without having to explicitly specify the second set (in this case c). The parameter is then specified over

Page 3 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Table 1: Raw Data

ACTIVITY GAMS INDEX DESCRIPTION
Sectors:

1 ∗ 440 Production activities for the 440 sectors
in the IMPLAN database

Commodities:
3001 ∗ 3440 Commodities for productive purposes

Factors of Production:
5001 Employee Compensation
6001 Proprietary Income
7001 Other Property Income
8001 Indirect Business Taxes

Private (household) institutions:
10001 Households less than 10k
10002 Households 10-15k
10003 Households 15-25k
10004 Households 25-35k
10005 Households 35-50k
10006 Households 50-75k
10007 Households 75-100k
10008 Households 100-150k
10009 Households 150k+

Public (government) institutions:
11001 Federal Government NonDefense
11002 Federal Government Defense
11003 Federal Government Investment
12001 State Local Govt NonEducation
12002 State Local Govt Education
12003 State Local Govt Investment

Corporate institutions:
13001 Enterprises (Corporations)
14001 Gross Private Fixed Investment (Capital)
14002 Inventory Additions Deletions

Transfers:
15001 ∗ 15056 Transfer satellite accounts

Trade:
25001 Foreign Trade
28001 Domestic Trade

Note: 1: A list of all 440 IMPLAN industries can be found in (IMPLAN-Group-LLC., 2014).

the relevent set indices (r,t,c) and called sam for social accounting matrix. The data from the IMPLAN
software is then read in using the $include command.

In order to verify that the data was read in properly, we provide a series of checks that row and column
sums balance. Following the simple balancing checks, we create a mapping to more easily understood set
names. For instance:

set map(j,*) /

empl.5001 Employee Compensation

Page 4 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

prop.6001 Proprietary Income
othp.7001 Other Property Income
btax.8001 Indirect Business Taxes
hh1.10001 Households LT10k
hh2.10002 Households 10-15k
hh3.10003 Households 15-25k
hh4.10004 Households 25-35k
hh5.10005 Households 35-50k
hh6.10006 Households 50-75k
hh7.10007 Households 75-100k
hh8.10008 Households 100-150k
hh9.10009 Households 150k+
...

The example provided above indicates the types of names used for each set element. Rather than
having to remember that households with annual income between 25-30 thousand dollars is 10004, we
simply relabel this to hh4 as in the 4th household income grouping. For a complete listing of the names
we provide for each set element, refer to Appendix A.

Once the data are labeled in a more memory friendly way, we take the aggregate social accounting
matrix and divide it up into its submatrix components. For instance, we have:

parameter make(j,tt,jj) Domestic industry make matrix
use(j,tt,jj) Domestic industry use matrix
iuse(j,tt,jj) Domestic institutional use matrix
fd(j,tt,jj) Factor input matrix : industry use of factors
fexprt(j,tt,jj) Factor exports

...

The above specifies various submatrices that are standard in input output analysis. That is, the make
matrix specifies the amount of each commodity supplied by a given sector while the use matrix specifies
the amount of each commodity needed to produce a given sector’s output. The set identifiers (j,tt,jj)

specify the sector and commodity (j,jj) and the transfer type, tt. IMPLAN data is structured differently
than say the national tables in that they provide information in that third dimensional array of transfer
types. Later, this information will be stored in satellite tables and the standard two dimensional framework
will be employed for CGE analysis. The code then loops through the mappings (set identifiers in Appendix
A) to define each submatrix via commands such as:

PUTCLOSE ’Relabelling MAKE’/;
loop(samdomain(s,t,g),

make(sj,tt,gj)\$jdomain(s,t,g,sj,tt,gj) = sam(s,t,g);
);
unread(samdomain(s,t,g)) = no;

The PUTCLOSE command writes to the command line (or processing window if using the GAMS IDE)
which submatrix is being process. The loop command then uses the mapping we’ve defined between
the traditional numerical IMPLAN index and alphabetic index to formulate the submatrices. Once this is
finished, a series of checks are performed to ensure that we haven’t missed any data elements along the
way and that the data adds up to original totals.

The program concludes by defining base year statistics with another mapping mechanism via com-
mands such as:

parameter echop Echoprint of base year statistics;

echop(acctcat,"make") = sum((mapcat(acctcat,tt),sj,gj), make(sj,tt,gj));
echop(acctcat,"use") = sum((mapcat(acctcat,tt),gj,sj), use(gj,tt,sj));

Page 5 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

echop(acctcat,"iuse") = sum((mapcat(acctcat,tt),gj,ij), iuse(gj,tt,ij));
echop(acctcat,"fd") = sum((mapcat(acctcat,tt),fj,sj), fd(fj,tt,sj));
echop(acctcat,"imake") = sum((mapcat(acctcat,tt),ij,gj), imake(ij,tt,gj));
...

The above commands sum over the aggregated categories, mapcat, which is a mapping that defines
categories such as:

set mapcat(acctcat,tt) /
INCOME.(

cprf "Corporate Profits with IVA (15001)"
ncmp "Emp Comp (Wages/salary w/o soc sec) (15002)"
ecmp "Employee Comp (other labor income) (15003)"
prop "Proprietors Inc (w/o soc sec & CCA) (15004)"
rent "Rent with capital consumption Adj (15005)"
btrn "Business transfers (15006)"
divd "Dividends (15007)"
nint "Interest (net-from industries) (15008)"
gint "Interest (gross) (15009)"

),
...

The above aggregate tracks total income levels in the various submatrices that have previously been
specified.

Next, in order make the data files as clean and compact as possible, all sectors and set elements that
are unused for a particular region are dropped (GAMS automatically associates dropped elements with 0
if read back in) and then stored as:

PUTCLOSE ’Writing %ds%_data.gdx’/;
execute_unload
’..\temp\gdx\%ds%_data.gdx’,sj=s,gj=g,fj=f,tt=t,tj=trd,ij=i,j,make,
use,iuse,fd,fexprt,imake,fs,trnsfer,fimprt,trnshp,sexport,iexport,simport,iimport;

Again, when running this program, the modeler will be able to see via the command prompt when
data files are being written via the PUTCLOSE command. This data file is then used in the next program,
condense.gms.

3 Microconsistency

As is similar to the first program, condense.gms begins by explicitly specifying all set elements in the
IMPLAN data set. Fortunately, because much of the set specification legwork was done in the previous
program, we can simply read in set elements from the *.gdx data file via:

set f(*) Factors,
t(*) Accounts,
i(*) Institutions
j(*) Aggregated SAM accounts;

$gdxin ’..\temp\gdx\%ds%_data.gdx’
$load f t i j

The above bit of GAMS code specifies the sets needed for reading in the benchmark data defined in the
previous readimplan.gms program. Sectors and goods are read in explicitly. Before continuing, consider
Table 2 for a description on the sets used.

Page 6 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Table 2: Set Indices

SET GAMS INDEX DESCRIPTION
All Accounts:

t Aggregate account index

Sectors and Goods:
s,g Sectors and commodities

Factors of Production:
f Aggregate factors of production category

Capital Account Factors:
fk Factors allocated to the capital account

Institutions:
i Aggregate institutions category

Private (household) institutions:
h Household accounts

Public (government) institutions:
pub Government accounts

Corporate institutions:
corp Corporate accounts

Trade:
trd Trade accounts

Once we have properly read in all set identifiers, we pull in the actual data parameters that were stored
in the *.gdx. Again, in order to do this, we simply specify parameter names and read the data in via the
$gdxin and $loaddc commands.

PARAMETER
make_(s,t,g) Domestic industry make matrix
use_(g,t,s) Industry use matrix
iuse_(g,t,i) Institutional use matrix
fd_(f,t,s) Industry use of factors
imake_(i,t,g) Institutional make matrix

...

$loaddc make_=make use_=use iuse_=iuse fd_=fd fexprt imake_=imake
$loaddc fs trnsfer_=trnsfer fimprt trnshp_=trnshp sexport_=sexport
simport_=simport iexport_=iexport iimport_=iimport

Next, in order to enable us to identify specific sections of the social accounting matrix, we use dynamic
subsets which is technical parlance for creating subsets of a already defined set. For instance, set i denotes
a set for all institutions (i.e. households, government, etc.). In order to specifically identify all, say
households in set i, we create dynamic subsets of the form:

set h(i) Private (household) institutions /
hh1 Households LT10k (10001)
hh2 Households 10-15k (10002)
hh3 Households 15-25k (10003)
hh4 Households 25-35 (10004)
hh5 Households 35-50k (10005)
hh6 Households 50-75k (10006)
hh7 Households 75-100k (10007)
hh8 Households 100-150k (10008)

Page 7 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

hh9 Households 150k+ (10009) /,

As will be apparent, this allows us to easily slice up the submatrices that form the aggregate social
accounting matrix into benchmark parameters in a general equilibrium model. The next task takes our
three dimensional arrays of data (remembering that IMPLAN data has additional transfer information)
and converting it into the more standard two dimensional arrays more standard to AGE analysis and
saving the additional transfer data into additional parameters. So, first, we specify our parameters of
interest:

parameter make(s,g) Domestic industry make matrix
use(g,s) Industry use matrix
iuse(g,i) Institutional use matrix
fd(f,s) Industry use of factors

...

Once specified, we then identify the appropriate elements in each three dimensional array of data. This
looks like:

make(s,g) = make_(s,"cmke",g); make_(s,"cmke",g) = 0;
abort$card(make_) "Unexpected nonzeros here:", make_;
use(g,s) = use_(g,"cuse",s); use_(g,"cuse",s) = 0;
abort$card(use_) "Unexpected nonzeros here:", use_;
iuse(g,i) = iuse_(g,"cuse",i); iuse_(g,"cuse",i) = 0;
abort$card(iuse_) "Unexpected nonzeros here:", iuse_;
fd(f,s) = fd_(f,"frpt",s); fd_(f,"frpt",s) = 0;
abort$card(fd_) "Unexpected nonzeros here:", fd_;

The above identifies each element of the three dimensional array that is needed for future analysis. For
instance, in the first line, �cmke� refers to “commodity make” which is the relevant transfer information
for our purposes. Additionally, �cuse� refers to “commodity use” and �frpt� refers to “factor receipts”
(which are all located in Appendix A). The abort$ commands are a simple failsafe that indicates if any
nonzero elements are detected in the three dimensional arrays which are unexpected. As is consistently
observed throughout this note, many verification procedures like this exist in the code.

Once the relevant parameters have been formulated, a series of algebraic calculations are undergone to
ensure that accounting identities still hold after partitioning the social accounting matrix. We label these
calculations as zero-profit, market clearance and income balance identities. For instance, the zero-profit
condition is specified as:

parameter bmkchk Handshake on benchmark consistency;

* Profitability of sectoral production:

bmkchk(s,"profit") = round(sum(g, make(s,g) - use(g,s))
+ sum((g,trd), sexport(s,g,trd)-simport(trd,g,s))
- sum(f, fd(f,s)), 6);

In more readable algebra, letting makes,g be the make matrix, useg,s be the use matrix, sexports,g,trd be
the sectoral exports, simporttrd,g,s be sectoral imports and f d f ,s be factor demands, this is specified as:

∑
g

(
makes,g + ∑

trd
sexports,g,trd

)
= ∑

g

(
useg,s + ∑

trd
simporttrd,g,s

)
+ ∑

f
f d f ,s, ∀s

This simply states that the amount of output produced and exported by sector s must equal the value
of inputs used in production. Similar relationships exist for goods, factors and trade accounts. For the

Page 8 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

sake of brevity, we leave these balancing checks for the perusal of the modeler. Such checks are later more
explicitly described. However, as will be used later on, let iexporti,g,trd be institutional exports, iimporttrd,g,k

be institutional imports, imakei,g be the institutional make matrix, and iuseg,i be the institutional use matrix.
Once accounting identities have been verified given our initial partitioning of the social accounting

matrix, we divide the data into smaller subsections to be used as benchmark parameters in CGE analysis.
Consider Table 3 for an overview of benchmark data. As a matter of convenience, we specify the set for
trade, trd as simply t for the remainder of this note.

Table 3: Benchmark Data

GAMS PARAMETER SYMBOL DESCRIPTION
s0(g) sg Aggregate output
a0(g) ag Aggregate domestic absorption
m0(t,g) mtg Aggregate foreign and domestic imports
md0(g,*) mdg. Sectoral and institutional import demand
x0(t,g) xtg Aggregate exports to foreign or domestic markets
d0(g) dg Local supply
y0(*,g) y.g Sectoral and institutional supply
dd0(g,*) ddg. Sectoral and institutional domestic demand
fd0(f,s) f d f s Sectoral factor demand
fs0(f,s) f s f s Sectoral factor supply
br0(*,*) br.. Bilateral transfers
bt0(i) bti Aggregate bilateral transfers
fe0(i,f) f ei f Factor endowments
fm0(t,f) f mt f Factor imports
fx0(t,f) f xt f Factor exports
nxe0 nxe National exchange endowment
fxe0 f xe Foreign exchange endowment

Note, the (.) here denotes the use of either the i (institutional) or s (sectoral) subscript.

In order to formulate these benchmark parameters, the following calculations are performed:

x0(g,trd) = sum(s,sexport(s,g,trd)) + sum(i,iexport(i,g,trd));
d0(g) = sum(s,make(s,g)) + sum(i,imake(i,g));
s0(g) = d0(g) + xn0(g) + x0(g);
a0(g) = d0(g) + mn0(g);
y0(s,g) = make(s,g) + sum(trd, sexport(s,g,trd));
...

We’ve suppressed quite a few lines of GAMS code for each calculation simply because such relation-
ships can be easily identified and rationalized with a quick browse through the associated code. However,
an algebraic description for the above is given for clarifying thoughts. First, aggregate exports to both the
foreign and domestic markets are formulated as:

xgt = ∑
s

sexportsgt + ∑
i

iexportigt, ∀g, t

Page 9 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

This simply stipulates that total exports are comprised of both sector and institutional level exports to
foreign and national markets. Next, the local supply of goods is formulated as:

dg = ∑
s

makesg + ∑
i

imakeig, ∀g

which describes the total amount of commodity g made by sectors and institutions (given by the make
matrices). Aggregate output is represented as:

sg = dg + ∑
t

xgt, ∀g

meaning that total output is comprised of local supply and exports to foreign and national markets. It
is important to distinguish here the difference between local and national markets. For instance, if we
have data on a single county, say Adams county, Wisconsin, the local supply concerns only Adams county
while the national (sometimes referred to as domestic) supply concerns the rest of the United States. Next,
aggregated domestic absorption is formulated as:

ag = dg + m′dtrd′ ,g, ∀g

which specifies the amount of a good g produced locally or imported from national markets. The last
parameter formulation described here is sectoral supply. Such is formulated as:

ysg = makesg + ∑
t

sexportsgt, ∀s, g

This simply adds the amount of good g produced by sector s with the total amount of such good exported
by such sector. The other parameters are defined analogously via the GAMS code.

Given these parameters, we again perform zero-profit, market clearance and income balance checks to
make sure the data was properly divided and inherent data accounting identities still hold. As has been
consistent throughout this text thus far, we only introduce and explain explicitly a fragment of the GAMS
code for brevity. In the code, this looks like:

parameter mdlchk Cross check on consistency of model equilibrium;

* Profitability of sectoral production:

mdlchk(s,"profit") = sum(g, y0(s,g)- dd0(g,s) - md0(g,s)) - sum(f,
fd0(f,s)-fs0(f,s));

* Demand and supply in the market for domestic goods:

mdlchk(g,"market") = sum(s,y0(s,g)) + sum(i,y0(i,g)) - x0(g) - xn0(g) + mn0(g)
- sum(s,dd0(g,s)) - sum(i,dd0(g,i));

* Factor markets:

mdlchk(f,"market") = sum(i,fe0(i,f)) + sum(trd,fm0(trd,f)-fx0(trd,f)) -
sum(s,fd0(f,s)-fs0(f,s));
...

As already described above when concerned with submatrices such as the make and use arrays, these
consistency checks are crucial for continuing to ensure that our benchmark equilibrium still exists. Con-

Page 10 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

sider first the zero profit conditions inherent in an economic equilibrium.

∑
g

ysg + ∑
f

f s f s = ∑
g

(
mdgs + ddgs

)
+ ∑

f
f d f s, ∀s

Such condition stipulates that the value of sectoral supply of goods and factors must equal the value of
goods and factors used in the production for sector s’s output. Next, we have a market clearance condition
for domestic goods. This is:

∑
s

ysg + ∑
i

yig + m′dtrd′ ,g = ∑
t

xtg + ∑
s

ddgs + ∑
i

ddis ∀g

I.e. in the market for domestic goods g, goods supplied by all sectors and institutions, as well as those
imported from the national market must equal the amount exported out of the region as well as those
demanded for domestic use by sectors and institutions (hence these market clearance conditions simply
equate supply with demand). Note, in the above notation, m′dtrd′g is used to represent only the imports
coming from the domestic market. Next, we have similar conditions for factor markets:

∑
i

f ei f + ∑
t

f mt f + ∑
s

f s f s = ∑
t

f xt f + ∑
s

f d f s ∀ f

Here, the supply of factor f in the region include total factor endowments over all institutions, factor
imports and total factor supply by sectors must equal total factor demand and exports. Again, this
condition reflects the market clearance idea that is inherent in the predefined SAM accounting identities.

As is quite standard in the realm of input output data reconciliation, a few imbalances were detected.
Thus, a matrix balancing optimization routine is employed to enforce key accounting identities while
minimizing the percent change in the data. In such routine, we allow certain parameters described above
to be variables which are denoted in uppercase. By letting a few parameters vary just slightly, key identities
can be enforced. The optimization routine can be found in the GAMS code where:

nonnegative
variables DD0_, MD0_, Y0_, X0_, D0_, XN0_, FD0_, FS0_, FE0_,

MN0_;

equations objdef, profit, gmarket, fmarket, trademarket, income,
domestic;

parameter zeropenalty Penalty factor for introduction of
nonzeros/1000/;

objdef.. OBJ =e= sum((g,s)$dd0(g,s), abs(dd0(g,s))*sqr(DD0_(g,s)/dd0(g,s)-1)) +
sum((g,s)$md0(g,s), abs(md0(g,s))*sqr(MD0_(g,s)/md0(g,s)-1)) +
sum((f,s)$fd0(f,s), abs(fd0(f,s))*sqr(FD0_(f,s)/fd0(f,s)-1)) +
sum((f,s)$fs0(f,s), abs(fs0(f,s))*sqr(FS0_(f,s)/fs0(f,s)-1)) +
sum((f,i)$fe0(i,f), abs(fe0(i,f))*sqr(FE0_(i,f)/fe0(i,f)-1)) +
sum((g,i)$dd0(g,i), abs(dd0(g,i))*sqr(DD0_(g,i)/dd0(g,i)-1)) +
sum((g,i)$md0(g,i), abs(md0(g,i))*sqr(MD0_(g,i)/md0(g,i)-1)) +
sum(g$xn0(g), abs(xn0(g)) *sqr(XN0_(g)/xn0(g)-1)) +
sum(g$x0(g), abs(x0(g)) *sqr(X0_(g)/x0(g)-1)) +
sum(g$d0(g), abs(d0(g)) *sqr(D0_(g)/d0(g)-1)) +
sum(g$mn0(g), abs(mn0(g)) *sqr(MN0_(g)/mn0(g)-1)) +
sum((i,g)$y0(i,g), abs(y0(i,g)) *sqr(Y0_(i,g)/y0(i,g)-1)) +

zeropenalty *(
sum((g,s)$(dd0(g,s)=0), DD0_(g,s)) +
sum((g,s)$(md0(g,s)=0), MD0_(g,s)) +
sum((f,s)$(fd0(f,s)=0), FD0_(f,s)) +

Page 11 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

sum((f,s)$(fs0(f,s)=0), FS0_(f,s)) +
sum((i,f)$(fe0(i,f)=0), FE0_(i,f)) +
sum((g,i)$(dd0(g,i)=0), DD0_(g,i)) +
sum((g,i)$(md0(g,i)=0), MD0_(g,i)) +
sum(g$(x0(g)=0), X0_(g)) +
sum(g$(d0(g)=0), D0_(g)) +
sum(g$(mn0(g)=0), MN0_(g)) +
sum((i,g)$(y0(i,g)=0), Y0_(i,g)));

profit(s).. sum(g, y0(s,g)) =e= sum(g, DD0_(g,s) + MD0_(g,s)) + sum(f,
FD0_(f,s)-FS0_(f,s));

...

In the above, a few constraints were left out. They are defined in algebraic notation explicitly below.
In order to minimize the amount of space needed to formulate the above, allow the objective function to
be written in aggregate terms using Asg as the variable and asg the benchmark parameter. Moreover, let
Φsg denote all (s, g) pairs that are nonzero and Φc

sg denote all pairs that are zero in the benchmark. Pick
γ to be some large penalty scalar. The above can be formulated as:

min
Asg

∑
Φsg

|asg|
(

Asg

asg
− 1
)2

+ γ ∑
Φc

sg

Asg

s.t ∑
g

ysg = ∑
g

(
DDgs + MDgs

)
+ ∑

f

(
FD f s − FS f s

)
∀s

Dg + ∑
t

Xtg = ∑
s

ysg + ∑
i

Yig ∀g

Dg + MNg = ∑
s

DDgs + ∑
i

DDis ∀g

∑
i

FEi f + ∑
t

(
f mt f − f xt f

)
= ∑

s

(
FD f s − FS f s

)
∀ f

∑
tg

Xtg + ∑
it

(
brti − brit

)
+ ∑

f t

(
f xt f − f mt f

)
= ∑

g

(
MNg + ∑

s
MDgs + ∑

i
MDgi

)

∑
g

Yig + ∑
f

FEi f + ∑
i′

(
brii′ − bri′i

)
+ ∑

t

(
brti − brit

)
= ∑

g

(
DDgi + MDgi

)
∀i

The above algebraically characterizes our balancing routine. The objective function seeks to minimize the
percent difference between variable values and parameters by a least squares formulation. γ represents
a zero penalty. Thus, all elements of a given variable that is initially zero in the benchmark remain
zero after optimally solving the program. This provides us a mechanism for inducing sparsity in the
social accounting matrix (thus easing any future computational burdens). The constraints represent our
zero-profit, market clearance and income balance constraints previously defined above. The difference
now concerns replacing any benchmark parameter subject to change with its associated variables in each
equation.

Once specifying this routine, the program then seeks to calibrate the data such that all accounting
identities are satisfied. Once the program solves and initial benchmark figures are replaced by solutions
to the nonlinear program, we apply a filter to the data set which drops any values that are less than 0.1%
of the average value for such parameter. The code looks like:

trace("x0","ave") = sum((g), abs(x0(g)))/sum((g)$x0(g),1);
trace("d0","ave") = sum((g), abs(d0(g)))/sum((g)$d0(g),1);
trace("y0","ave") = sum((s,g), abs(y0(s,g)))/sum((s,g)$y0(s,g),1);

Page 12 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

...
parameter zerotol/4/;

x0(g)$(round(x0(g)/trace("x0","ave"),zerotol)=0) = 0;
d0(g)$(round(d0(g)/trace("d0","ave"),zerotol)=0) = 0;
y0(s,g)$(round(y0(s,g)/trace("y0","ave"),zerotol)=0) = 0;

As is readily apparent above, the average values for each parameter are calculated. The code then,
using the conditional command $ allows us to pick all elements of the parameter less than 0.1% of the
average value and set them to zero. Again, this is a convenient method for inducing sparsity. After
dropping such values, the calibration procedure is solved again.

In order to properly assess if the data has been calibrated correctly, an accounting general equilibrium
model was constructed. In the build stream distribution, such model is found under the build directory
named mgemodel.gms. The MPSGE code begin with:

$ontext
$model:implan

$sectors:
Y(s)$sy(s) ! Sectoral production
X(g)$s0(g) ! Export
A(g)$a0(g) ! Demand for domestic goods
M(g)$m0(g) ! Foreign import

$commodities:
PD(g)$d0(g) ! Local goods market
PY(g)$s0(g) ! Sectoral output
PA(g)$a0(g) ! Domestic goods market

...

Obviously, the entire model isn’t included in the above snippet of code. The accounting model’s
variables are represented in Table 4.

The market flows of such model can be nicely represented in Figure 1. For more on the model specifics,
see Appendix B. For the purpose of introducing the build stream, understanding variable names and
market flows suffices for continuing the discussion. The idea of the accounting model is simply to diagnose
any calibration issues following our matrix balancing routine. Once solved, the filtered data set is saved
in a new *.gdx file:

execute_unload ’..\temp\gdx\%ds%_filtered.gdx’, i, f, s, g, d0, bt0,
y0, dd0, md0, fd0, fs0, a0, mn0, d0, x0, xn0, br0, fe0, fm0, fx0, nxe0,
fxe0;

4 The Social Accounting Matrix

At this point in the build stream process, we’ve properly calibrated the data set such that benchmark
parameters represent a benchmark equilibrium. The next program, samgen.gms, creates a two dimensional
social accounting matrix which can be read in directly to GAMS for general equilibrium analysis. Also,
for interest in understanding the benchmark data, an excel file is created using this new SAM framework
constructed for analysis.

In this program, we construct a SAM using the logic from the accounting general equilibrium model
outlined in Appendix B. First, we create sets for each element of the row/columns of this new SAM based
on variables (both activity levels and prices) from the template CGE model. In the code, this looks like:

Page 13 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Table 4: GE Variables

VARIABLE DESCRIPTION
Ys Production

Production activities for the 440 sectors in the IMPLAN database

Xg Armington supply (foreign - national - local)
Local supply to foreign, national, or local markets

Ag Armington demand (national - local)
Demand for domestic goods

Mg Import supply
Imports supplied by foreign markets

RAi Representative Agent:
Consumer type for each institution

ROW Rest of World:
Aggregate rest of world account

PYg Output markets
Markets for commodities

PDg Local markets
Local markets for commodities

PMg Foreign imports
Imports used as final demand or inputs of production

PAg Domestic composite
Domestic goods used as final demand or inputs of production

PFf Factors of Production:
Factors as specified in the social accounting matrix

PTi Bilateral transer market
Prices for transfers

PFX Foreign exchange:
Price for goods from the rest of world

PNX Domestic exchange:
Prices for goods from domestic market

set r Rows and columns in the SAM /

1*440 Production (Y),
1001*1440 Armington supply (foreign - national - local) (X),
2001*2440 Armington demand (national - local) (A),
3001*3440 Import supply (M),

4001*4440 Output markets (PY),
5001*5440 Local markets (PD),
6001*6440 Foreign import (PM),
7001*7440 Domestic composite (PA),

8001 Employee Compensation
8002 Proprietary Income
8003 Other Property Income
8004 Indirect Business Taxes

10001*10009 Households

Page 14 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Figure 1: Intermediate Demands

11001 Federal Government NonDefense
...

Such can be nicely summarized in Table 5.

Once the sets are explicitly defined, the social accounting matrix is constructed element by element via
the loop command. Examples include:

set industry1(r) Y /1/
supply1(r) X /1001/
absorb1(r) A /2001/
import1(r) M /3001/
output1(r) PY /4001/
foreign1(r) PM /6001/
armington1(r) PA /7001/;

...

* PROD:Y

loop(output1(r), loop(g, sam(s,r+(g.val-1)) = y0(s,g);););
loop(armington1(r), loop(g, sam(r+(g.val-1),s) = dd0(g,s);););
loop(foreign1(r), loop(g, sam(r+(g.val-1),s) = md0(g,s);););

The above snippet of code indicates two things. First, singleton sets are specified in order to tell GAMS

Page 15 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Table 5: New SAM Elements

HEADER ELEMENTS DESCRIPTION
Y Production

1 ∗ 440 Production activities for the 440 sectors in the IMPLAN database

X Armington supply (foreign - national - local)
1001 ∗ 1440 Local supply to foreign, national, or local markets

A Armington demand (national - local)
2001 ∗ 2440 Demand for domestic goods

M Import supply
3001 ∗ 3440 Imports supplied by foreign markets

PY Output markets
4001 ∗ 4440 Markets for commodities

PD Local markets
5001 ∗ 5440 Local markets for commodities

PM Foreign imports
6001 ∗ 6440 Imports used as final demand or inputs of production

PA Domestic composite
7001 ∗ 7440 Domestic goods used as final demand or inputs of production

PF Factors of Production:
8001 Employee Compensation
8002 Proprietary Income
8003 Other Property Income
8004 Indirect Business Taxes

i Institutions:
Private (household) institutions:

10001 Households less than 10k
10002 Households 10-15k
10003 Households 15-25k
10004 Households 25-35k
10005 Households 35-50k
10006 Households 50-75k
10007 Households 75-100k
10008 Households 100-150k
10009 Households 150k+

Public (government) institutions:
11001 Federal Government NonDefense
11002 Federal Government Defense
11003 Federal Government Investment
12001 State Local Govt NonEducation
12002 State Local Govt Education
12003 State Local Govt Investment

Corporate institutions:
13001 Enterprises (Corporations)
14001 Gross Private Fixed Investment (Capital)
14002 Inventory Additions Deletions

t Trade:
25001 Foreign Trade
28001 Domestic Trade

Page 16 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

where benchmark data should be placed in the two dimensional SAM. Then looping over these singleton
sets, benchmark parameters are read into the social accounting matrix. Perhaps the best way to illustrate
what is going on is to simply give the overview of what this new social accounting matrix looks like.

Table 6 explicitly shows what we mean by “dropping” benchmark parameters into the SAM via the
loop command. Notably, the row and column sums of such matrix are precisely what we referred to as
zero-profit, market clearance and income balance conditions mentioned above.

Notice that the bottom left quadrant of this matrix is shaded in gray. Due to the additional information
that IMPLAN provides on transfers between institution types, the gray cells indicate additional informa-
tion on such transfers for these parameters. This data is stored in a satellite table and can be used in the
model if necessary. In the code, this would look like:

parameter sattelite(r,rr,tn) Sattelite disaggregation of SAM transfers;

loop(imap(i,r),

* Transfers between domestic agents:

loop(iimap(ii,rr),
sam(r,rr) = sum(t,trnsfer(i,t,ii));
loop(mapt(t,tn),sattelite(r,rr,tn) = trnsfer(i,t,ii);););

Again, we use the same programming techniques to construct the satellite tables, though we restrict
our attention to only transfer data. Once the tables have been constructed, a series of balancing checks are
performed:

set sambalcol /"Row Sum","Column Sum","Difference"/;
parameter sambalance Cross check on microconsistency of the social
accounting matrix;
sambalance(r,"Row Sum") = sum(rr,sam(r,rr));
sambalance(r,"Column Sum") = sum(rr,sam(rr,r));
sambalance(r,"Difference") = sambalance(r,"Row Sum") - sambalance(r,"Column Sum");
sambalance(r,sambalcol)$(not round(sambalance(r,"Difference"),6)) = 0;
display sambalance;

This check serves to illustrate that no errors were made when mapping benchmark parameters to the
social accounting matrix. Thereafter, the constructed matrices are translated into readable excel files:

$onecho >..\data\xlsx\gdxxrw.rsp
set=rdef rng="Accounts!a1" rdim=3 cdim=0 values=string
set=tnm rng="Accounts!e1" rdim=1 cdim=0 values=string
par=sam rng="SAM!a1" cdim=0
par=sattelite rng="Sattelite!a1" cdim=0
$offecho
execute_unload ’..\temp\gdx\%ds%_sam.gdx’, rdef, tnm, sam, sattelite;
execute ’gdxxrw i=..\temp\gdx\%ds%_sam.gdx o=..\data\xlsx\%ds%_sam.xlsx

%@..\data\xlsx\gdxxrw.rsp’;

The $onecho allows us to write a little script to convert the data into a *.gdx file and then use
gdxxrw.exe to convert the gdx file to an excel file. Note that rdim and cdim indicate row and column
dimension of the data, par denotes the parameter of interest and rng allows us to specify which tab in
excel to place the data. The resulting excel file will be named %ds%_sam.xlsx and will be located in the
xlsx data directory.

Page 17 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

Ta
b

l
e

6:
R

e
g

i
o

n
a

l
So

c
i
a

l
A

c
c

o
u

n
t

i
n

g
M

a
t

r
i
x
:N

e
w

Fr
a

m
e

w
o

r
k

Pr
od

uc
ti

on
Ex

po
rt

s
A

gg
re

ga
te

O
ut

pu
t

Lo
ca

l
Im

po
rt

D
om

es
ti

c
Fa

ct
or

s
In

st
it

ut
io

ns
Tr

ad
e

C
om

po
si

te
M

ar
ke

ts
M

ar
ke

t
M

ar
ke

t
C

om
po

si
te

Y
X

A
PY

PD
PM

PA
PF

i
t

Pr
od

uc
ti

on
Y

y sg
fs

fs

Ex
po

rt
s

X
d g

x t
g

A
gg

re
ga

te
A

a g
C

om
po

si
te

O
ut

pu
t

PY
s g

M
ar

ke
ts

Lo
ca

l
PD

d g
M

ar
ke

t

Im
po

rt
PM

m
d g

s
m

d g
i

M
ar

ke
t

D
om

es
ti

c
PA

dd
gs

dd
gi

C
om

po
si

te

Fa
ct

or
s

PF
fd

fs
fx

tf

In
st

it
ut

io
ns

i
y ig

fe
if

br
ii′

br
it

Tr
ad

e
t

m
n t

g
m

tg
fm

tf
br

ti

Page 18 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

5 Partitioning and Benchmark Consistency

The final step that remains in the build stream concerns taking the previously outputted excel file, reading
it back into GAMS, defining benchmark parameters from such excel file, and verifying via the CGE ac-
counting model that the benchmark data still represents an equilibrium. The program begins by defining
sets as in the samgen.gms program. I.e.

set r Rows and columns in the SAM /
1*440 Production (Y),
1001*1440 Armington supply (foreign - national - local) (X),
2001*2440 Armington demand (national - local) (A),
3001*3440 Import supply (M),

4001*4440 Output markets (PY),
5001*5440 Local markets (PD),
6001*6440 Foreign import (PM),
7001*7440 Domestic composite (PA),

...

Once all sets have been declared, the excel file %ds%_sam.xlsx is converted to a gdx file with gdxxrw.exe

and then read into the program. Once the data is read in, we perform checks verifying that microconsis-
tency still holds (eliminating the risk that errors occurred when reading the data).

set chkcol /Rowsum,ColSum,Tolerance/;
parameter samchk Cross check on SAM;
loop(rdef(r,acct,u),

samchk(r,acct,u,"RowSum") = sum(rr, sam(r,rr));
samchk(r,acct,u,"ColSum") = sum(rr, sam(rr,r));
samchk(r,acct,u,"Tolerance") = sum(rr, sam(r,rr)-sam(rr,r)););

samchk(r,acct,u,chkcol)$(not round(samchk(r,acct,u,"Tolerance"),3)) = 0;
option samchk:3:3:1;
display samchk;

Once we’ve verified row and column sums match, we proceed to "undo" the looping mechanism
described in the previous program. That is, we forulate benchmark parameters used in the accounting
CGE model based on the aggregate SAM. This looks like:

parameter
s0(g) Aggregate output,
a0(g) Aggregate domestic absorption,
m0(g) Aggregate foreign imports,
d0(g) Local supply,
x0(g) Foreign exports,

...
loop((rdef(r,"y",s), cdef(rr,"py",g)), y0(s,g) = sam(r,rr); sam(r,rr)=0;);
loop((cdef(rr,"y",s),rdef(r,"pa",g)), dd0(g,s) = sam(r,rr); sam(r,rr)=0;);
loop((cdef(rr,"y",s),rdef(r,"pm",g)), md0(g,s) = sam(r,rr); sam(r,rr)=0;);
...

As is apparent, we declare our standard parameter names, then select from the aggregate SAM the
appropriate data elements for each parameter. We’ve defined dynamic subsets cdef and rdef to easily
select the appropriate data elements via the loop command. Once all parameter are created, we again
verify that the standard accounting identities inherent in input-output data hold.

parameter profit Zero profit chk;
profit(s,"y") = sum(g, y0(s,g))

- sum(g,dd0(g,s)+md0(g,s))
- sum(f, fd0(f,s)-fs0(f,s));

Page 19 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

profit(g,"a") = a0(g) - mn0(g) - d0(g);
profit(g,"x") = x0(g)+xn0(g)+d0(g)-s0(g);
display profit;
...

The above specifies our zero-profit check on the data. Finally, the last step is to verify that the bench-
mark data does indeed describe an equilibrium. Thus, it is read into the accounting CGE model described
in Appendix B.

$include mgemodel

implan.iterlim = 0;
$include implan.gen
solve implan using mcp;

The above bit of code conveniently includes the MPSGE model in this program without explicitly
defining the model within the program. implan.iterlim=0 sets the iteration limit for the model "implan"
to zero, thus allowing us to verify that benchmark equilibrium holds. Indeed, by setting the iteration
limit to zero, the level values for each variable (benchmark data) are plugged into the model. Bench-
mark equilibrium replication is verified if the solutions to the model are unity and the residual term is
insignificant.

If properly calibrated, the data is outputted into a final gdx data file. Moreover, we include a measure
of data precision in the gdx file which represents the residual term.

parameter tolerance Data precision;
tolerance = implan.objval;

execute_unload ’..\data\GAMSData\%ds%.gdx’, i, f, s, g, d0, bt0,
y0, dd0, md0, fd0, fs0, a0, mn0, d0, x0, xn0, br0, fe0, fm0, fx0, nxe0,
fxe0, tolerance;

6 Using the Batch File

This section will be of primary interest to individuals that accept our build routine as is and are simply
looking to extract from their IMPLAN data usable CGE benchmark parameters. Our batch file, run.bat,
contains the means to automatically set up the necessary directory structure as well as reconcile all avail-
able IMPLAN datasets. Importantly, it should be noted that each dataset must be in its *.gms file format
which can be directly outputted by the IMPLAN software.

The batch file begins with:

@echo off

set data=..\data\
set temp=..\temp\
set GAMSData=..\data\GAMSData\

: For a Unix script:

: set datadir=../data/
: set tempdir=../temp/

: Create the requisite output directories:

if not exist %data%nul mkdir %data%
if not exist %temp%nul mkdir %temp%

Page 20 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

if not exist %GAMSData%nul mkdir %GAMSData%
if not exist %temp%gdx\nul mkdir %temp%gdx
if not exist %temp%listing\nul mkdir %temp%listing
if not exist %temp%restart\nul mkdir %temp%restart
if not exist %data%\xlsx\nul mkdir %data%xlsx
...

The default configuration for this batch file is for Windows machines. Later versions will contain Mac
friendly parallels. The program begins by constructing data directories. The set commands allow us to
dynamically assign directory paths for each category. If the modeler is interested in changing such paths,
simply alter the path configuration in each set environment. Then, the mkdir commands makes each
specified directory.

Next, we generate each data set with:

: Generate datasets for a specific set of regions:

set datadir=%data%Wisconsin
set regions=
setlocal EnableDelayedExpansion
for %%f in (%datadir%*.gms) do (set regions=!regions! %%~nf)

: Alternatively could process all the states:

:set datadir=%data%States
:set regions=
:setlocal EnableDelayedExpansion
:for %%f in (%datadir%*.gms) do (set regions=!regions! %%~nf)

call readimplan %regions%
call condense %regions%
call samgen %regions%
call partition %regions%

Importantly, we have our root Wisconsin data directory located in ...\data\Wisconsin. However,
this must be changed to agree with your machine. For instance, if you have Illinois county data in
...\data\Illinois, change the first line above to set datadir=%data%Illinois. Once the correct data
directory has been entered in, the program automatically generates data sets for all data files in such
directory (by calling on the four previously described programs for each region). Finally, a measure of
tolerance for data set precision is stored using:

:tolerances
gdxmerge %GAMSData%*.gdx id=tolerance
echo.
echo Resulting dataset precision:
echo.
gdxdump merged.gdx symb=tolerance
:end

Page 21 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

References

IMPLAN-Group-LLC. (2014): “IMPLAN User’s Guide v3,” .

Mathiesen, L. (1985): “Computation of economic equilibria by a sequence of linear complementarity
problems,” Mathematical Programming Study, 23, 144–162.

Rausch, S., and T. F. Rutherford (2009): “Tools for building national economic models using state-level
implan social accounts,” Unpublished manuscript.

Rosenthal, R. E. (2004): “GAMS–a user’s guide,” .

Rutherford, T. F. (1995): “Extension of GAMS for complementarity problems arising in applied eco-
nomics,” Journal of Economic Dynamics and Control, 19(8), 1299–1324.

Page 22 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

A New GAMS Set Identifiers

We first note that numbers are still used when referencing sectors. However, because sectors and com-
modities are identical in the data set, we simply use one number index to indicate either a good or a
sector.

Table 7: New Set Identifiers

ACTIVITY GAMS INDEX DESCRIPTION
Goods and Sectors:

1 ∗ 440 Production activities for the 440 sectors
in the IMPLAN database

Factors of Production:
empl Employee Compensation (5001)
prop Proprietary Income (6001)
othp Other Property Income (7001)
btax Indirect Business Taxes (8001)

Private (household) institutions:
hh1 Households LT10k (10001)
hh2 Households 10-15k (10002)
hh3 Households 15-25k (10003)
hh4 Households 25-35k (10004)
hh5 Households 35-50k (10005)
hh6 Households 50-75k (10006)
hh7 Households 75-100k (10007)
hh8 Households 100-150k (10008)
hh9 Households 150k+ (10009)

Public (government) institutions:
fnd Federal Government NonDefense (11001)
fdf Federal Government Defense (11002)
fin Federal Government Investment (11003)
sln State Local Govt NonEducation (12001)
sle State Local Govt Education (12002)
sin State Local Govt Investment (12003)

Corporate institutions:
ent Enterprises (Corporations) (13001)
inv Gross Private Fixed Investment (Capital) (14001)
stk Inventory Additions Deletions (14002)

Transfers:
cprf Corporate Profits with IVA (15001)
ncmp Emp Comp (Wages/Salary w/o Soc Sec) (15002)
ecmp Employee Comp (Other Labor Income) (15003)
prop Proprietors Inc (w/o Soc Sec & CCA) (15004)
rent Rent with Capital Consumption Adj (15005)

Page 23 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

ACTIVITY GAMS INDEX DESCRIPTION
btrn Business Transfers (15006)
divd Dividends (15007)
nint Interest (net - from industries) (15008)
gint Interest (gross) (15009)
trns Transfers (15010)
srpl Surplus or deficit (15011)
save Savings (surplus) not use (15012)
wage Wage accruals less surplus (15013)
sstw Social ins tax - employee Contribution (15014)
sstf Social ins tax - employer Contribution (15015)
sgov Surplus-subsidy - govt enterprises (15016)
excs Indirect bus tax: Excise Taxes (15017)
duty Indirect bus tax: Custom Duty (15018)
nont Indirect bus tax: Fed NonTaxes (15019)
stax Indirect bus tax: Sales Tax (15020)
bptx Indirect bus tax: Property Tax (15021)
bmvt Indirect bus tax: Motor Vehicle Lic (15022)
sevt Indirect bus tax: Severance Tax (15023)
otax Indirect bus tax: Other Taxes (15024)
slnt Indirect bus tax: S/L NonTaxes (15025)
ctax Corporate profits tax (15026)
pitx Personal Tax: Income Tax (15027)
egtx Personal Tax: Estate and Gift Tax (15028)
fees Personal Tax: NonTaxes (Fines- Fees (15029)
pmvt Personal Tax: Motor Vehicle License (15030)
pptx Personal Tax: Property Taxes (15031)
fish Personal Tax: Other Tax (Fish/Hunt) (15032)
capc Capital consumption allowance (15033)
retp Retained profits (profits w/IVA&CCA (15034)
disc NIPA statistical discrepency (15035)
fint Interest (net -from RoW) (15036)
fact Factor trade (15037)
radj Adjustment to retained earnings (15038)
cuse Commodity Use (15050)
ctrd Commodity Trade (15051)
cmke Commodity Make (15052)
frpt Factor Receipts (15053)
ftrn Foreign Commodity Transshipments (15054)
iuse Industry Use (15055)
itrd Industry Trade (15056)

Trade:
ftrd Foreign Trade (25001)
dtrd Domestic Trade (28001)

Page 24 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

B Accounting Model

B.1 The Primal Formulation

The benchmark identities presented in the previous section indicate the market clearance, zero profit,
and income balance conditions but do not, however, characterize the behavior of agents in the model. In
the competitive equilibrium setting, the standard assumption of optimizing atomistic agents applies for
both producers and consumers. For sector Ys, we characterize input choices as though they arose from
minimizing unit costs:

min
ddgs ,mdgs , f d f s

cA
s + cM

s + cF
s

s.t. cA
s = ∑

g
PAgddgs

cM
s = ∑

g
PMgmdgs

cF
s = ∑

f
PFf f d f s

Fs(ddgs, mdgs, f d f s) = Ys

Figure 2: Production Function in MPSGE syntax

$prod:Y(s)$sy(s) t:0 s:0 g.tl:4 va:1
o:PY(g) q:y0(s,g)
i:PA(g) q:dd0(g,s) g.tl:
i:PM(g) q:md0(g,s) g.tl:
i:PF(f) q:fd0(f,s) va:
o:PF(f) q:fs0(f,s)

Note here that we denote decision variables as the same benchmark parameter symbol excluding the
overhead bar. The production function F is described by a nested constant-elasticity-of-substitution (CES)
form which is shown in MPSGE syntax as indicated by i: fields in Figure 2. The supply of output Ys is
portrayed as arising from the following profit-maximization problem:

max
ysg ,(f s f s)

PYgysg + PFf (f s f s)

s.t. Ys = Γs(ysg, f s f s)

The production function Γ() is described by a constant-elasticity-of-transformation (CET) form which is
shown in MPSGE syntax as indicated by o: fields in Figure 2. The g.tl and va fields denote differing
elasticities of substitution at the various nests of the production function (i.e. input imports from domestic
vs. foreign markets have a different elasticity from factor markets).

The choice among imports from different trading partners is based on Armington’s idea of regionally
differentiated products. Here, we differentiate between goods produced locally (at price PDg and goods
produced in other US counties (at price PNX). This is reflected by the following cost minimization

Page 25 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

problem:

min
mng ,dg

(PNX)mng + PDgdg

s.t. FA
g (mng, dg) = Ag

Figure 3: Armington Aggregation in MPSGE syntax

$prod:A(g)$a0(g) s:8
o:PA(g) q:a0(g)
i:PNX q:mn0(g)
i:PD(g) q:d0(g)

The import aggregation function portrayed by FA
g above is described by the nested CES function shown

in Figure 3.

Figure 4: Imports

$prod:M(g)$m0(g)
o:PM(g) q:m0(g)
i:PFX q:m0(g)

We then differentiate domestic demand for goods from foreign imports of goods. This is represented
in Figure 4. As shown, we have a Leontief production function where the supply of foreign imports at
price PMg to the local market has input prices PFX. This is denoted in the following cost minimizing
problem:

min
mg

(PFX)mg

s.t. ΓM(mg) = Mg

Figure 5: Exports

$prod:X(g)$s0(g) t:4
o:PFX q:x0(g)
o:PNX q:xn0(g)
o:PD(g) q:d0(g)
i:PY(g) q:s0(g)

Next, we characterize the exports market by Figure 5. Supply from local sources either are used locally
(at price PDg), exported to other counties (at price PNX) or exported to foreign markets (at price PFX).
This market can be represented by a constant elasticity of transformation production function (as denoted

Page 26 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

by the use of the t: field). I.e. we can define the problem as follows:

max
xg ,xng ,dg

(PFX)xg + (PNX)xng + PDgdg

s.t. FX(xg, xng, dg) = Xg

Figure 6: Representative Agents

$demand:RA(i) s:1 g.tl:4
d:PA(g) q:dd0(g,i) g.tl:
d:PM(g) q:md0(g,i) g.tl:
d:PT(i) q:bt0(i)
e:PY(g) q:y0(i,g)
e:PT(ii) q:br0(ii,i)
e:PNX q:(sum(trd,br0(trd,i)))
e:PF(f) q:fe0(i,f)

Now considering the demand side of the model, representative agents maximize utility subject to their
budget constraint. This is reflected in the MPSGE code in Figure 6. Here, we model demand by assuming
Cobb-Douglas preferences amongst transfers, factors and goods (note that this is ascribed by the s: field).
Moreover, the elasticity of substitution between foreign imports and domestic goods is 4. The associated
optimization problem involved is:

max
ddgi ,mdgi ,bti

U(ddgi, mdgi, bti)

s.t. RAi = ∑
g

PYgyig + ∑
i′

PTi′brii′ + PNX(∑
t

brti) + ∑
f

PFf f ei f

Figure 7: Rest of World

$demand:ROW
d:PFX
e:PNX q:(-sum((i,trd),br0(trd,i)))
e:PT(i) q:(sum(trd,br0(i,trd)))
e:PF(f) q:(sum(trd,fm0(trd,f)-fx0(trd,f)))
e:PNX q:nxe0
e:PFX q:fxe0

Finally, we must consider the rest of the world. Consider Figure 7. Similar to the case of the represen-
tative agent, Figure 7 can be represented as a utility maximization problem. Consider the following:

max U

s.t. ROW = PNX(−∑
it

brti) + ∑
it

PTi(∑
t

brit)

+ PNX(nxe) + PFX(f xe)

Note, it is important to realize that by setting reference quantities to our benchmark parameters, the

Page 27 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

solutions to the model will be consistent with prices simply set to 1. In a sense, then, without introducing
any sort of demand or supply side shock, this model serves as an accounting model for our benchmark
values (and correct calibration). Thus, introducing a shock to the model allows us to analyze how relative
prices change.

B.2 Equilibrium Conditions

We now define the general equilibrium of the model in a complementarity format. Rutherford (1995) and
Mathiesen (1985) have shown that a complementary-based approach is convenient, robust, and efficient.
A characteristic of economic models is that they naturally involve a complementary problem, i.e. given a
function F: Rn −→ Rn, find z ∈ Rn such that F(z) ≥ 0, z ≥ 0, and zT F(z) = 0.

An equilibrium in complementarity format is represented by a vector of activity levels, a non-negative
vector of prices, and a non-negative vector of incomes such that:

1. no production activity makes a positive profit (zero profit conditions),

2. excess supply is non-negative for all goods and factors (market clearance conditions), and,

3. expenditure does not exceed income (budget constraints).

Zero-profit conditions exhibit complementary slackness with respect to associated activity levels, market
clearing exhibit complementary slackness with respect to market prices, and budget constraint define
income variables. Notably, formulating general equilibrium models in a complementarity format is useful
for solving large models. Attempting to solve the equivalent large scale nonlinear program (those outlined
above) for the model equilibrium proves quite difficult with many variables and equations.

B.3 GAMS/MCP Formulation

We follow the Harberger and Peronni approaches for solving the MCP formulation by initially setting all
prices and activity levels to 1. Therefore, in the following calibrated form equations, benchmark prices are
set to 1 and thus do not appear.

Let the following notation serve as the necessary elasticities in a CES framework. First the elasticity
of substitution between local and national goods is defined as (σdn

g = 8). The Armington elasticity of
substitution between domestic and foreign goods is given as (σdm

g. = 4). Furthermore, the elasticity of
transformation used in the export market is defined as (ηx

g = 4).

B.4 Zero-Profit Conditions

Define the following as benchmark value shares, θ, benchmark value added, vas, and benchmark demands,
idgs to be used in our CES formulation of the production market:

θva
f s =

f d f s

vas

θm
gs =

mdgs

idgs

vas = ∑
f

f d f s

idgs = mdgs + ddgs

Page 28 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

The zero-profit condition for the production market (Y) stipulates that the cost of production must be
equated with revenue. Thus, we define cost functions as follows:

CVAs = ∏
f

PF
θva

f s
f

PDYgs =

(
θm

gsPM
1−σdm

gs
g + (1− θm

gs)PA
1−σdm

gs
g

)1/1−σdm
gs

CVA denotes the cost function for factors used in production (exhibiting Cobb-Douglas technologies) and
PDY indicates the cost function for domestic and foreign goods used as inputs in production. Thus, the
zero-profit condition for market Ys can be defined as:

vasCVAs + ∑
g
(idgsPDYgs) ≥∑

g
(PYgysg) + ∑

f
(PFf f s f s)

Next, domestic absorption of inputs combines local goods and imports from other domestic regions. Let
θn

g denote the domestic value share (note, domestic and national is used synonymously) where:

θn
g =

mng

(mng + dg)

We therefore can define the cost function for national and local goods and thus the zero profit condition
as:

CAg =

(
θn

g PNX1−σdn
g + (1− θn

g)PD
1−σdn

g
g

)1/1−σdn
g

(mng + dg)CAg ≥ agPAg

Because the import market simply has one input and one output with the same reference quantity, the
zero-profit condition can be written as:

PFX = PMg

For the export market, I can define the benchmark value shares as follows:

αx
g =

xg

xg + xng + dg

αnx
g =

xng

xg + xng + dg

αd
g =

dg

xg + xng + dg

Where αx
g denotes the foreign export share, αnx

g denotes the national export share, and finally αd
g denotes

the local export share. We define the unit revenue as:

RXg =

(
αx

gPFX1+ηx
g + αnx

g PNX1+ηx
g + αd

gPD
1+ηx

g
g

)1/1+ηx
g

Page 29 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

And thus, the zero-profit condition for exports is:

sgPYg = (xg + xng + dg)RXg

B.5 Market Clearance

The next necessary condition for an economic equilibrium requires that the supply of good g must be
greater than or equal to the demand of good g for all g. Before stating the market clearance conditions,
additional value shares and demand functions are needed. Let θd

gi denote the value share of final demand,
θt

i denote the transfers share of expenditure, and θm
gi be the institutional import value share. Also, let the

benchmark institutional demand be idgi. That is:

idgi = mdgi + ddgi

θm
gi =

mdgi

idgi

θd
gi =

idgi

bti + ∑g idgi

θt
i =

bti

bti + ∑g idgi

Before defining the demand functions for imported and domestic goods and transfers, we first define the
bottom level of the nested expenditure functions.

PDRAgi =

(
θm

giPM
1−σdm

gi
g + (1− θm

gi)PA
1−σdm

gi
g

)1/1−σdm
gi

Therefore, the demand functions for imports, domestic goods, and transfers can be defined as (note,
because the elasticity of substitution is 1, they are Cobb-Douglas):

MDRAgi =

(PDRAgi

PMg

)σdm
gi

θm
giθ

d
gi

(
RAi

PDRAgi

)

DDRAgi =

(PDRAgi

PAg

)σdm
gi

(1− θm
gi)θ

d
gi

(
RAi

PDRAgi

)

TDi =

(
θt

i RAi

PTi

)
Now that the demand functions have been defined, the market clearance conditions necessary for a model
equilibrium require that supply equals demand. For the local market:

dgXg

(
PDg

RXg

)ηx
g

= dg Ag

(
CAg

PDg

)σdn
g

Page 30 of 31

Build Stream (IMPLAN) Rutherford and Schreiber

That is, the supply of good, g to the local market must be equated with the demand for such good. Notably,
this equation can be derived from taking the derivative of the respective cost function and multiplying
that by the associated activity level in the market of interest. Similarly, for output markets, PY, we have:

∑
sys

Ysysg + ∑
i

yig = sgXg

Market clearance for PA:

Agag = ∑
sys

Ysddgs

(
PDYgs

PAg

)σdm
gs

+ ∑
i

DDRAgi

Market clearance for PM:

Mgmg = ∑
sys

Ysmdgs

(
PDYgs

PMg

)σdm
gs

+ ∑
i

MDRAgi

Market clearance for PT:

∑
i′

brii′ + ∑
t

brit = TDi

Market clearance for PF:

∑
sys

Ys f s f s + ∑
i

f ei f + ∑
t
(f mt f − f xt f) = ∑

s

[
f d f s

(
CVAs

PFf

)
Ys

]

Market clearance for PFX:

∑
g

xgXg

(
PFX
RXg

)ηx
g

+ f xe = ∑
g

mg Mg +

(
ROW
PFX

)

Market clearance for PNX:

∑
g

xngXg

(
PNX
RXg

)ηx
g

+ nxe = ∑
g

mmg Ag

(
CAg

PNX

)σdn
g

B.6 Income Balance

The income balance condition simply indicates that income received must be equated with all expendi-
tures. This condition applies to both demand agents: the representative agent (RA) and rest-of-world
(ROW). The income balance condition for both agents then are:

RAi = ∑
g

PYgyig + ∑
i′

PTi′bri′i + PNX ∑
trd

brtrd,i + ∑
f

PFf f ei f

ROW = PNX(− ∑
i,trd

brtrd,i) + ∑
i
(PTi ∑

trd
bri,trd)

+ ∑
f
(PFf ∑

trd
(f mtrd, f − f xtrd, f)) + PNXnxe + PFX f xe

Page 31 of 31

	Introduction
	Reading IMPLAN Data into GAMS
	Microconsistency
	The Social Accounting Matrix
	Partitioning and Benchmark Consistency
	Using the Batch File
	New GAMS Set Identifiers
	Accounting Model
	The Primal Formulation
	Equilibrium Conditions
	GAMS/MCP Formulation
	Zero-Profit Conditions
	Market Clearance
	Income Balance

